Thursday, 16 October 2014

Rapid expansion of human

Model of human brain


A new study could rewrite the story of ape and human brain evolution. While the neocortex of the brain has been called "the crowning achievement of evolution and the biological substrate of human mental prowess," newly reported evolutionary rate comparisons show that the cerebellum expanded up to six times faster than anticipated throughout the evolution of apes, including humans.


The findings suggest that technical intelligence was likely at least as important as social intelligence in human cognitive evolution, the researchers say.

"Our results highlight a previously unappreciated role of the cerebellum in ape and human brain evolution that has the potential to refocus researchers' thinking about how and why the brains in these species have become distinct and to shift attention away from an almost exclusive focus on the neocortex as the seat of our humanity," says Robert Barton of Durham University in the United Kingdom.

"In humans, the cerebellum contains about 70 billion neurons -- four times more than in the neocortex," Barton says. "Nobody really knows what all these neurons are for, but they must be doing something important."

The neocortex had gotten most of the attention in part because it is such a large structure to begin with. As a result, in looking at variation in the size of various brain regions, the neocortex appeared to show the most expansion. But much of that increase in size could be explained away by the size of the animal as a whole. Sperm whales have a neocortex that is proportionally larger than that of humans, for example.

Barton and Venditti say that the cerebellum seems to be particularly involved in the temporal organization of complex behavioral sequences, such as those involved in making and using tools, for instance. Interestingly, evidence is now emerging for a critical role of the cerebellum in language, too.

While plenty of work remains, the new study establishes the cerebellum as "a new frontier for investigations into the neural basis of advanced cognitive abilities," the researchers say.





No comments:

Post a Comment